

Canadian Centre for Computational
Genomics

C3G Analysis Workshop: RNA-Seq

Day2: Counts & Differential Expression Analysis

22-23 January 2019

Learning objectives

Objectives:

- **Understand the GenPipes workflow** and how steps relate to each other
- **Understand the theory** behind each step
- Be aware of the **differences between gene and transcript level analysis**
- Know the **different outputs** produced by the pipeline

Differential expression analysis?

- What? The **read count at the gene and/or transcript level** in two conditions.
- Why? To identify genes/transcripts that may **play a role in differentiating the groups**.
- How? By **counting the number of reads** assigned to each gene/transcript and by **comparing their average.**

The assumption is that the **number of reads produced** by each gene/transcript is **proportional to its abundance**

There are 3 main steps to the analysis…

Gene level

Condition A vs Condition B

Statistical testing & Multiple testing correction

GenPipes performs both gene level and transcript level analyses

rnaseq.py Gene level: 18
Cuffdiff **Transcript level** Picard **RNA** metrics steps 13,14,22 ▒ ⋙ 10 bar $\overline{\Omega}$ 15
Cufflinks 16
Cuffmerge 17
CuffQuant Bam hard clip Transcript level: Picard mark
duplicates $rac{21}{60}$ seq utils 24
IHEC metrics 19
Cuffnorm **FPKM** — 4 » RNASeQC exploratory steps 15,16,17,18,19corolation natrix analysis RNAseg 2
Trimmomatic Merge
trimmomatic
Stats \sim Picard Sam
to Fastq Picard merge
Sam files Picard
Sort Sam Star 12 Wiggle Step per reasde 9 23 25 $\bf 22$ Estimate 13 Raw
counts
metrics Differential Step on multiple Verify
Bam ID Differential ribosomal Raw expression
GOseq reasets/samples expression **RNA** counts 圖 File **Gene level** Input/outpu Alternative entr Step dependency

Canadian Centre for Computational Genomics

RNA-seq data are challenging to analyze

- Technical and biological **variability**
- **Biases**: sequencing depth, composition bias ♀
- **Spliced alignments**, transcript deconvolution
- **Complex** statistical models, low sample size
- **Large amount** of data
- Computationally **intensive**

Part1: Read counts

Reads can be assigned to genes or transcripts

Canadian Centre for Computational Genomics

- Gene level:
	- count reads falling in genes
	- **HTSeq*,** featureCounts,…
- **Transcript level:**
	- assign reads to transcripts; more **complex** than for genes!
	- RSEM, StringTie, **Cufflinks package***, Kallisto, Salmon,…

***used by GenPipes**

HTSeq counts the reads falling into coding regions **HTSeq**

Count reads overlapping genes

rawCountMatrix.tsv

Canadian Centre for Computational Genomics

Transcript level expression is difficult to calculate

- Genes can have **multiple alternative splicing events** \bigcirc and there is an **unknown number of isoforms**.
- Many possible ways to **reconstruct the gene model** from the data.
- Reads are assigned to an isoforms using **probabilistic methods**.

The Cufflinks suite allows transcript level expression

- **Cufflinks suite** includes a number $\mathbb Q$ of different programs that work together to **perform transcript level analysis**
- Cufflinks (the program) performs the **transcriptome assembly**
- Cuffmerge creates a **meta-**♦ **assembly**
- Cuffquant **quantifies transcript expression**

Canadian Centre for Computational Genomics

Cufflinks assembles the transcriptome

Cufflinks takes the aligned reads and inputs a model of the transcript profile: that's the **transcriptome assembly**.

a) Cufflinks first **regroups reads into 'bundles'** of overlapping reads.

b) **Reads are connected** in an 'overall graph', forming paths.

c) Complete path are **merged to form the isoforms.**

https://home.cc.umanitoba.ca/~frist/PLNT7690/lec12/lec12.3.html

Cuffmerge creates a meta-assembly

13

Merge assemblies to create single **merged transcriptome annotation** V

- Genes with low expression don't permit full reconstruction in each sample => merging often **recovers complete gene**
- **Newly discovered isoforms** integrated with known ones to form more complete gene model

Cuffquant quantifies the expression

Quantifying gene and transcript level expression for known and novel transcripts

- Fragments are **matched to the transcripts** from which they could have originated.
- Estimates **transcript abundances** using a statistical model.

Part 2: Normalization and filtering

Library size affects the number of counts

16

- There are several factors influencing the read counts. We are mostly V concerned with **sample-specific effects.**
- The most common bias is coming from differences in library size. ႃୢ
- Samples have different number of total reads: the **number of reads** ♀ **assigned to a gene is dependent on the total number** of reads generated.

Composition bias towards high counts genes overshadows the rest

- **Highly expressed** genes "**consume**" a substantial portion of the reads V (number of reads is finite)
- Resulting in **remaining genes being under-sampled** ♀
- **Normalization factor minimizes the log-fold** changes between the ♦ samples for most genes (this assumes they are not diff. exp.)

Low expressed genes/transcripts are not informative

- Biologically, a gene must be **expressed at some minimal level** before it is V likely to be translated into a protein or to be **biologically important**
- **Remove low expressed genes/isoforms** as they provide little evidence for \mathbb{Q} differential expression
- **Improve statistical analysis** (less tests to perform) ♦
- **No standard** threshold! \mathbb{Q}
- GenPipes "loose" filtering: \mathbb{Q}
	- Genes**: at least 1 read per sample**
	- Transcripts: remove if **<10% of the most abundant transcript**

Part 3: Differential expression analysis

DEA consists of comparing the expression level

- Taking the **normalized read count** data and performing **statistical analysis**
- Identify quantitative **changes in expression levels** between experimental groups
- Gene level: **edgeR***, **DESeq2***,…
- Transcript level: **Cuffdiff***, Sleuth,…
- Only **pair-wise comparisons** supported by GenPipes

***used by GenPipes** 20

Statistical tests compare the expression between groups

- The replicates are used **to estimate the variance** and calculate the significance of observed **changes in expression** (logFC) between groups.
- **Many different statistical tests** exist depending of the tool and the experimental design (e.g. Fisher's exact test).
- A **p-value** reflecting the confidence that a **gene is differentially expressed** is then computed.
- An adjusted p-value is computed to account for **False Discoveries.**

False Positives are a big concern when working with large datasets

When performing millions of tests (one per gene), **some will be positive** by chance only (**False Positive**).

E.g. an analysis with 90% accuracy:

The number of False Discoveries can be controlled

- We need to account for that => **Multiple testing correction** ♦
- Benjamin-Hochberg method known as **FDR** (**False Discovery Rate**) most commonly used
- This allows us to set the **rate of False Positive** (usually 5%)

A FDR of 5% means that **5% of** *significant* **results** will be false positives!

What constitutes a differentially expressed gene isn't well established

- **No clear definition** of a "differentially Q expressed gene"
- Common approach is to use log Fold Change and FDR: **logFC>1.5** and **FDR<0.05**
- LogFC threshold is **arbitrary** and depends of the **sensitivity of the technology**
- **Small logFC** might **not be biologically relevant**, but the exact definition of "small" is open to interpretation

Part 4: Further analyses

GSEA determines if a set of genes is statistically different

Gene Set Enrichment Analysis (GSEA) is a computational method that helps answer the question "**Are genes related to ____ significantly differentially expressed?**

- Input: list of gene sets, expression \mathbb{Q} matrix
- Gene sets can be molecular signatures \mathbb{Q} (MSigDB) including gene ontology gene set (c5), immunologic signature gene set (c7), etc.
	- Output: pvalues and FDRs for each gene set

 \mathbb{Q}

http://software.broadinstitute.org/gsea/index.jsp

Gorilla identifies enriched GO terms

- GOrilla is a tool for identifying and visualizing enriched GO terms in ranked lists of genes.
- What gene ontologies and pathways do my DGE share?
- Input: list(s) of genes \mathbb{Q}
- Output: pvalues and FDR for enriched $\mathbf Q$ GO terms, GO chart

http://cbl-gorilla.cs.technion.ac.il/

- Alternative splicing
- **Gene fusion analysis**

…

Differential exon usage

