

Canadian Centre for Computational Genomics

C3G Analysis Workshop: RNA-Seq

Day2: Counts & Differential Expression Analysis

22-23 January 2019

Learning objectives

Objectives:

- Understand the GenPipes workflow and how steps relate to each other
- Understand the theory behind each step
- Be aware of the differences between gene and transcript level analysis
- Know the different outputs produced by the pipeline

Differential expression analysis?

- What? The **read count at the gene and/or transcript level** in two conditions.
- Why? To identify genes/transcripts that may play a role in differentiating the groups.
- <u>How</u>? By counting the number of reads assigned to each gene/transcript and by comparing their average.

The assumption is that the **number of reads produced** by each gene/transcript is **proportional to its abundance**

There are 3 main steps to the analysis...

	S1	S2	S3	S4
gene1	55	48	12	6
gene2	104	102	247	263

Gene level

	Transcript level							
	S1	S2	S3	S4				
tr1	23	17	12	6				
tr2	5	6	3	2				

Condition A vs Condition B

	FC	logFC	Pvalue	FDR
gene1	-5	-2.3	0.0012	0.03

Statistical testing & Multiple testing correction

3

Normalization & Filtering

	S1	S2	S3	S4
gene1	53.2	49.1	11.6	5.9
				/

GenPipes performs both gene level and transcript level analyses

Canadian Centre for Computational Genomics RNA-seq data are challenging to analyze

- 7 Technical and biological variability
- **Biases**: sequencing depth, composition bias
- Spliced alignments, transcript deconvolution
- **Complex** statistical models, low sample size
- **Large amount** of data
- Computationally intensive

Part1: Read counts

Reads can be assigned to genes or transcripts

Canadian Centre for Computational Genomics

- Gene level:
 - count reads falling in genes
 - HTSeq*, featureCounts,...
- Transcript level:
 - assign reads to transcripts; more **complex** than for genes!
 - RSEM, StringTie, Cufflinks package*, Kallisto, Salmon,...

*used by GenPipes

HTSeq counts the reads falling into coding regions

Count reads overlapping genes

rawCountMatrix.tsv

Canadian Centre for Computational

Genomics

	s1	s2	
gene1	12	15	
gene2	0	2	
gene3	1643	1352	

http://htseq.readthedocs.io/en/master/count.html

Transcript level expression is difficult to calculate

- Genes can have multiple alternative splicing events and there is an unknown number of isoforms.
- Many possible ways to reconstruct the gene model from the data.
- Reads are assigned to an isoforms using probabilistic methods.

The Cufflinks suite allows transcript level expression

- Cufflinks suite includes a number of different programs that work together to perform transcript level analysis
- Cufflinks (the program) performs
 the transcriptome assembly
- Cuffmerge creates a metaassembly
- Cuffquant quantifies transcript
 expression

Cufflinks assembles the transcriptome

Cufflinks takes the aligned reads and inputs a model of the transcript profile: that's the **transcriptome assembly**.

a) Cufflinks first **regroups reads into 'bundles'** of overlapping reads.

b) **Reads are connected** in an 'overall graph', forming paths.

c) Complete path are **merged to** form the isoforms.

https://home.cc.umanitoba.ca/~frist/PLNT7690/lec12/lec12.3.html

Cuffmerge creates a meta-assembly

Merge assemblies to create single merged transcriptome annotation

- Genes with low expression don't permit full reconstruction in each sample => merging often recovers complete gene
- Newly discovered isoforms integrated with known ones to form more complete gene model

Cuffquant quantifies the expression

Quantifying gene and transcript level expression for known and novel transcripts

- Fragments are matched to the transcripts from which they could have originated.
- Stimates transcript abundances using a statistical model.

Part 2: Normalization and filtering

Library size affects the number of counts

Ŷ

16

- There are several factors influencing the read counts. We are mostly concerned with **sample-specific effects.**
- ^o The most common bias is coming from differences in library size.
- Samples have different number of total reads: the number of reads
 assigned to a gene is dependent on the total number of reads generated.

Composition bias towards high counts genes overshadows the rest

- Highly expressed genes "consume" a substantial portion of the reads (number of reads is finite)
- Resulting in remaining genes being under-sampled
- Normalization factor minimizes the log-fold changes between the samples for most genes (this assumes they are not diff. exp.)

Low expressed genes/transcripts are not informative

- Biologically, a gene must be expressed at some minimal level before it is likely to be translated into a protein or to be biologically important
- Remove low expressed genes/isoforms as they provide little evidence for differential expression
- Improve statistical analysis (less tests to perform)
- **No standard** threshold!
- GenPipes "loose" filtering:
 - Genes: at least 1 read per sample
 - Transcripts: remove if <10% of the most abundant transcript

Part 3: Differential expression analysis

DEA consists of comparing the expression level

- Taking the **normalized read count** data and performing **statistical analysis**
- Identify quantitative changes in expression levels between experimental groups
- Gene level: edgeR*, DESeq2*,...
- ? Transcript level: Cuffdiff*, Sleuth,...
- Only pair-wise comparisons supported by GenPipes

*used by GenPipes

Statistical tests compare the expression between groups

- The replicates are used to estimate the variance and calculate the significance of observed changes in expression (logFC) between groups.
- Many different statistical tests exist depending of the tool and the experimental design (e.g. Fisher's exact test).
- A p-value reflecting the confidence that a gene is differentially expressed is then computed.
- An adjusted p-value is computed to account for False
 Discoveries.

False Positives are a big concern when working with large datasets

When performing millions of tests (one per gene), some will be positive by chance only (False Positive).

E.g. an analysis with 90% accuracy:

The number of False Discoveries can be controlled

- We need to account for that => Multiple testing correction
- Benjamin-Hochberg method known as FDR (False Discovery Rate) most commonly used
- ⁹ This allows us to set the **rate of False Positive** (usually 5%)

A FDR of 5% means that **5% of** *significant* **results** will be false positives!

What constitutes a differentially expressed gene isn't well established

- No clear definition of a "differentially expressed gene"
- Common approach is to use log Fold Change and FDR: logFC>1.5 and FDR<0.05</p>
- Control LogFC threshold is arbitrary and depends of the sensitivity of the technology
- Small logFC might not be biologically relevant, but the exact definition of "small" is open to interpretation

Part 4: Further analyses

GSEA determines if a set of genes is statistically different

Gene Set Enrichment Analysis (GSEA) is a computational method that helps answer the question "Are genes related to _____ significantly differentially expressed?"

- Input: list of gene sets, expression matrix
- Gene sets can be molecular signatures (MSigDB) including gene ontology gene set (c5), immunologic signature gene set (c7), etc.
 - Output: pvalues and FDRs for each gene set

http://software.broadinstitute.org/gsea/index.jsp

Name	VariableCount	GeneCount	GeneSetSize	ES	NES	Nominal p-val	FDR q-val	FWER p-val	RANK AT MAX	Organism	Category
NUCLEOPLASM	227	182	279	-0.1964	-0.7969	0.8004	0.9328	1.0000	2822	Human	C5
CYTOPLASMIC_VESI	29	23	28	-0.3437	-1.2722	0.1728	0.4741	1.0000	2539	Human	C5
GOLGI_MEMBRANE	40	32	45	-0.2894	-0.9285	0.5650	0.8596	1.0000	2212	Human	C5
ORGANELLAR_RIBO	25	19	22	-0.5579	-1.4570	0.0874	0.2312	1.0000	1914	Human	C5
INTRINSIC_TO_END	19	17	24	-0.3294	-0.9147	0.6071	0.8726	1.0000	2970	Human	C5
PROTEINACEOUS_E	85	70	98	0.3679	1.2465	0.1516	0.5222	1.0000	1212	Human	C5
ORGANELLE_INNER	64	58	75	-0.4717	-1.7421	0.0102	0.0580	0.6930	3419	Human	C5
ADHERENS_JUNCTI	23	17	23	0.5122	1.1023	0.3340	0.6312	1.0000	1807	Human	C5
VESICULAR_FRACTI	38	29	44	-0.1295	-0.4994	0.9958	0.9945	1.0000	1566	Human	C5
EXTRACELLULAR_M	48	40	57	-0.3033	-1.0335	0.3762	0.7810	1.0000	1231	Human	C5
CELL_SURFACE	70	49	79	0.2554	0.7955	0.8254	0.8777	1.0000	1755	Human	C5
CELL_JUNCTION	66	48	82	0.3590	1.1004	0.2802	0.6318	1.0000	2271	Human	C5
MITOCHONDRIAL_P	126	111	142	-0.5121	-1.6474	0.0102	0.0884	0.9060	3104	Human	C5
RIBONUCLEOPROTE	113	96	143	-0.3564	-1.4254	0.0984	0.2584	1.0000	2851	Human	C5
COATED_VESICLE	44	37	47	-0.1878	-0.7121	0.9362	0.9598	1.0000	1300	Human	C5
MICROTUBULE_ASS	52	34	47	0.2752	1.0103	0.4494	0.7022	1.0000	722	Human	C5
CHROMATIN	29	23	35	0.4004	1.0099	0.4759	0.7026	1.0000	98	Human	C5
INTERMEDIATE_FILA	21	17	24	0.2632	0.7359	0.8838	0.9200	1.0000	3393	Human	C5
MEMBRANE_BOUND	105	85	117	-0.1717	-0.7554	0.9683	0.9422	1.0000	2667	Human	C5
MICROTUBULE_CYT	125	93	152	-0.3497	-1.2791	0.1369	0.4620	1.0000	1915	Human	C5
EXTRACELLULAR_R	368	308	447	0.3948	1.2496	0.1707	0.5196	1.0000	2181	Human	C5
CONTRACTILE_FIBER	40	22	25	0.630 0.3948	1.5837	0.0146	0.5946	0.9790	1147	Human	C5
MYOFIBRIL	36	18	19	0.6375	1.5991	0.0345	0.6808	0.9640	1147	Human	C5
MITOCHONDRIAL_M	72	66	86	-0.5058	-1.6737	0.0103	0.0749	0.8640	3419	Human	C5
NUCLEAR_CHROMO	45	36	54	-0.4265	-1.2023	0.2817	0.5821	1.0000	3484	Human	C5

Gorilla identifies enriched GO terms

- GOrilla is a tool for identifying and visualizing enriched GO terms in ranked lists of genes.
- What gene ontologies and pathways do my DGE share?
- Input: list(s) of genes
- Output: pvalues and FDR for enriched
 GO terms, GO chart

http://cbl-gorilla.cs.technion.ac.il/

- Alternative splicing
- Gene fusion analysis
- **Differential exon usage**

