C3G Analysis Workshop: RNA-Seq Part III: Introduction to RNA-seq

January 22-23, 2019

Canadian Centre for Computational Genomics

Learning objectives

- Understand the technical principles behind NGS
- 2. Understand the biological principles behind RNA-seq
- 3. Understand the standard steps of RNA-seq analyses
- 4. Introduce the GenPipes RNA-seq pipeline

Part 1: **Principles of NGS**

"Next Generation" Sequencing (NGS) has Revolutionized Genomics

- Sequencing costs have dropped dramatically.
- The processing time has also been greatly reduced.

Canadian Centre for Computational Genomics

Illumina NGS Technology is Based on Sequencing-by-Synthesis termined by 19

 $\overline{}$

Next-Generation DNA Sequencing Methods, Elaine Mardis, 2008 5 Annu. Rev. Genom. Human Genet. 2008.9:387-402. Downloaded from www.annualreviews.org ℓ

Illumina NGS Technology is Based on Sequencing-by-Synthesis Randomly fragment genomic DNA the fragments. $\frac{1}{2}$ $\overline{\mathbf{C}}$

Next-Generation DNA Sequencing Methods, Elaine Mardis, 2008 6

Figure 2

Illumina NGS Technology is Based **26 bp**. Sequencing-by-Synthesis $T_{\rm eff}$ flow cells are processed per instrumental different libraries in us to four the four vertext libraries in the second vertext. $\frac{1}{2}$ Von Sequenc length of a sequence read from all current next-, iechnologw from a capillary sequencer and (*b*) each nextna hu Cuntha

Image of frst chemistry cycle

After laser excitation, capture the image of emitted fuorescence from each cluster on the fow cell. Record the identity of the frst base for each cluster.

Before initiating the next chemistry cycle

The blocked 3' terminus and the fuorophore from each incorporated base are removed.

Sequence read over multiple chemistry cycles Repeat cycles of sequencing to determine the sequence

of bases in a given fragment a single base at a time.

To initiate the frst

to the fow cell.

like the other platforms, $\mathcal{L}_{\mathcal{A}}$ $\sqrt{2}$ plified fragments, as illustrated in **Figure 3***a*.

Laser

b

Annu. Rev. Genom. Human Genet. 2008.9:387-402. Downloaded from www.annualreviews.org \blacksquare

Next-Generation DNA Sequencing Methods, Elaine Mardis, 2008 **7** *Terminal Margins* **2008** (*Continued*)

In paired-end libraries, one pair is read first, then the second one, not both at once.

Sequencing-by-Synthesis offers Many Advantages

- **Low cost and time:** Sequencing-by-Synthesis (*Illumina)* is usually the cheapest sequencing option with the shortest turnaround time
- **Versatility:** many different types of analyses and libraries can be sequenced using this kind of sequencer
	- Including new libraries that allow for single-cell resolution
- **Support:** because it is the most common type of sequencing, it is supported by most providers and software packages

Sequencing-by-Synthesis also has Important Drawbacks

- **Relatively short reads:** *Illumina* can provide up to 250-300bp reads, but for now 100-150bp is still the standard
- **Sequencing errors:** although quite low compared to other alternatives (approx. 0.1%)

Phred Quality Scores Indicate the probability of each base call being correct **(higher score = higher quality)**

Part 2: **Principles of RNA -seq**

Canadian Centre for Computational Genomics

In brief:

RNA-seq is focused on analyzing and comparing a collection of **RNA molecules** (library) *from one or more samples.*

RNA-Seq can help answer several types of biological questions

What genes are being expressed?

• Transcriptome profiling

Is there a difference in gene expression between two conditions?

• Differential expression analysis

Are there novel genes/transcripts being expressed?

- Alternative splicing, gene fusions, etc.
- *De novo* assembly

There are several complications to RNA-Seq analyses

- RNA is a less stable molecule than DNA
- RNA usually has small exons separated by introns
- **Very** large variation in abundances
- RNA molecules have very different sizes
- Gene splicing complicates assigning reads to transcripts

exon skipping

alternative donor/receptor site

intron retention

It is very important to consider the library preparation method for RNA-Seq analyses

What is the library preparation strategy?

- **Total RNA:** Abundant RNA's dominate, high amounts of unprocessed RNA, rRNA and genomic DNA.
- **rRNA reduction:** Abundant rRNA's de-emphasized, still high amounts of unprocessed RNA and genomic DNA.
- **PolyA selection:** Limited transcript representation, low unprocessed RNA and genomic DNA.
- **cDNA capture:** Targeted transcript representation (using cDNA), all other RNA molecules de-emphasized.

Experimental design should consider the hypotheses and factors affecting RNA-Seq

How many replicates do you need?

- **Technical replicates:** Sequences derived from the *same sample* (lanes, flow cells, etc.)
	- More **technical replicates** are recommended if higher coverage is required
- **Biological replicates:** Sequences derived from *different samples*, but with the same phenotype/genotype or experimental condition
	- Recommended: *minimum* of 3 biological replicates per experimental group
	- More replicates are recommended if samples are expected to have high variation

Experimental design should consider the hypotheses and factors affecting RNA-Seq

How much coverage do you need?

Depends on the purpose (*examples for human*):

Adjust for smaller/larger genomes Check illumina website for updated guidelines and costs

Part 3: **RNA-seq Standard Analysis**

Most RNA-Seq analyses follow similar steps

The first steps ensure the quality of the sequencing data

Using data provided by sequencing provider.

- Samples are complete and properly named
- Initial library sizes are similar
- No large technical issues
	- No sudden drops in quality
	- Read length is appropriate
- Reads mostly align to organism of interest
	- **Check using BLAST**

Canadian Centre for Computational Genomics

Data Collection and QC

Raw sequences are usually reported in FASTQ format

Canadian Centre for Computational Genomics

There are two main formats for raw sequencing data:

- **FASTA:** sequence data
- **FASTQ:** sequence data + quality

These are text files (not binary), which means:

- They have **several possible extensions**: .fasta, .fa, .fastq, .fq
- They **can be very large** in size
	- Often compressed with gzip (extension .gz)

Data Collection and QC

The FASTA format is the basic sequence data format

FASTA format characteristics:

- **FASTA record start: >** symbol
- **Header:** text after **>**
- **Sequence:** subsequent line(s) after header
	- Lines should not be too long
	- Lines should have same width

The FASTA format is loosely defined, so there may be variations based on source!

Data Collection and QC

example.fa

> sequence1 ATGCATGCATGCATGCATGC ATGCATGCATGATGCATGCA TGCATGCA > sequence2 GCATTGCATCATGCATGCAT TGCATCAATGTGCATGCCAT ATG

21

The FASTQ format is similar to FASTA with the addition of Phred scores

FASTQ format characteristics:

- **FASTQ record start: @ symbol**
- **Header:** text after **@**
- **Sequence:** *single* line after header
- **Section separator: +** symbol (optional header)
- **Quality:** line with encoded **Phred score**
	- Same length as sequence

The FASTQ format is loosely defined, so there may be variations based on source!

Data Collection and QC

example.fq

@ sequence1 ATGCATGCATGCATGCATGC + sequence1 !''*((((*+))%%%++% @ sequence2 GCATGCATATGCATGCATGC + sequence2 (((***+))%!''*(%%++%**

The first steps ensure the quality of Canadian Centre for the sequencing data

FastQC

Genomics

²³ **Data Collection and QC**

Trimming removes adapter sequences Computational **and low quality reads**

Provide adapter sequences to trimming software

Set thresholds for quality and read length

- Minimum quality (phred score) should be 30
- Minimum length of reads should be around 60% of original length

Data Collection and QC

Software:

- Trimmomatic
- FastQC
- FASTX-Toolkit

The key to RNA-Seq analysis is how reads are assigned and counted

1. Assign reads to genes or transcripts

- Alignment (genome/transcriptome)
- Assembly (*de novo*/guided)
- *Pseudo-Alignment**
- **2. Estimate** abundances
- **3. Compare** abundances
	- **Normalization**

Processing and Analysis

Mapping RNA reads requires an adequate alignment strategy

Reads may span large introns, so using **splice-aware** aligners is key.

26

Mapping data is usually reported in the SAM/BAM format

SAM: Sequence Alignment Format

- BAM files are just binary SAM files
- Usually sorted and indexed (.bai)

Composed of two sections:

- **Header section:** information about reference, aligner and flags (lines begin with ω)
- **Alignment section:** each row represents a query sequence, and includes its name, position in reference, flags, mapping quality, etc.

Processing and Analysis

Assembling transcripts can help answer additional biological questions

Canadian Centre for Computational Genomics

Differential transcript analysis CuffLinks

Processing and Analysis **Processing and Analysis**

Alignment data is used to estimate gene expression

It is important to think how reads that align to more than one gene are counted.

Software:

- HTSeq-Count
- featureCount

Comparing expression requires normalization and statistical tests

Counts are normalized to account for:

- Library size
- Effective feature length

It is important to know if and how your "counts" have been normalized.

FPKM/RPKM are normalized units!

Processing and Analysis

Software: • DESeq2

- **EdgeR**
- Ballgown
- CuffDiff
- **Sleuth**

30

Comparing expression requires normalization and statistical tests

The most simple statistical test is a pairwise comparison

Hypothesis: gene/transcript expression changed between two conditions **Null hypothesis:** gene/transcript expression did not change…

P-value: probability of the *null* hypothesis

•Lower P-values indicate a lower probability that the effect is due to random chance •Smaller P-values do not always indicate "stronger" or "better" results •Use P-values as a *cutoff* to select values for further analysis, but not to "rank" them

Summarizing and interpreting results is key to gaining knowledge

Once statistical tests have been performed, results should be contextualized and validated

•Different approaches depending on the purpose of the experiment

Post-Processing

Part 4: **RNA -seq with GenPipes**

The GenPipes RNA-Seq workflow

There are two types of files that can be used as input for the pipeline

Starting from BAM files (step 1)

- The BAM files will be converted back to FASTQ files, and aligned again with appropriate parameters
- Make sure that BAM files include **unaligned reads**

Starting from FASTQ files (skips step 1)

• Don't skip the trimming step

Data Collection and QC

The STAR **two-pass alignment method increases novel junction discovery**

Two-step alignment method:

- **1. First pass mapping**
	- Using regular parameters
	- Detect novel junctions
- **2. Merge novel junctions** discovered in first alignment
	- Create new genome indices with all junctions (**SJ.out.tab**)
- **3. Second pass mapping**
	- Using new genome index

Processing and Analysis

Differential Analysis for both genes and transcripts

Differential Gene Analysis:

- Raw counts with HTSeq-count
- Differential analysis using both DESeq2 and EdgeR
- Differential GO analysis using GOSeq

Differential Transcript Analysis:

- Transcript assembly with CuffLinks
- Raw counts with CuffMerge, CuffCount
- Differential analysis with CuffDiff

Processing and Analysis

Outputs will be saved in different appropriately labeled directories

GenPipes output structure:

ls alignment alignment_1stPass cuffdiff cufflinks

cuffnorm **DGE** exploratory job_output

Log.out metrics raw_counts reference.Merged tracks.zip

trim report Rplots.pdf tracks

GenPipes generates a report with summary and visualization

- HTML report with links to plots, tables and data
- Alignment files can be explored with genome browsers

 0.5000

PC₁

 0.5004

• Use R or spreadsheets for additional data exploration

Canadian Centre for Computational

Part 5: **Review**

Conclusions

- 1. There are many biological and technical factors that can affect the results of an RNA-seq experiment
- 2. Most RNA-seq analysis follow similar steps, but there are variations in the methods and assumptions
- 3. The GenPipes RNA-seq pipeline is a tool that allows for a simple, reproducible way to perform RNA-seq analyses

This presentation includes material prepared by Dr. Mathieu Bourgey